
PHP LFI to arbitratry code
execution via rfc1867 file upload

temporary files
by Gynvael Coldwind

18 March 2011

Prologue
This article describes a method of taking advantage of a .php script Local File
Inclusion vulnerability. It does not describe any vulnerability in the PHP engine
itself, nor does it describe any new vulnerability class.

LFI to code execution, common methods
One of the problems commonly encountered during security audits of PHP
applications is proving that a Local File Inclusion indeed leads to arbitrary code
execution, which may not be the case if the attacker cannot inject code to any file
on the server.
Several methods are commonly used to prove that arbitrary code execution is
possible:

● including uploaded files - straight forward method; this requires existence
of an upload functionality in the tested website (e.g. photo upload, or
document upload), access to upload functionality and storage of uploaded
files in a place accessible by the PHP script

● include data:// or php://input pseudo protocols - these protocols must

be enabled and accessible via include (allow_url_include set to on); also,
php://filter pseudo protocol is usable in some cases

● including logs - this required PHP script to be able to access certain types

of logs, e.g. httpd server error logs or access logs; also, size of these logs
might make the attack harder (e.g. if error log has 2GB)

● including /proc/self/environ - this requires PHP to be run as CGI on a

http://www.google.com/url?q=http%3A%2F%2Fgynvael.coldwind.pl%2F&sa=D&sntz=1&usg=AFQjCNGy-qCiNX133MC5kNzDnZy3LJPO_A
http://www.google.com/url?q=http%3A%2F%2Fgynvael.coldwind.pl%2F&sa=D&sntz=1&usg=AFQjCNGy-qCiNX133MC5kNzDnZy3LJPO_A
http://www.google.com/url?q=http%3A%2F%2Fgynvael.coldwind.pl%2F&sa=D&sntz=1&usg=AFQjCNGy-qCiNX133MC5kNzDnZy3LJPO_A

system that has the /proc pseudo-filesystem and PHP script is required to
have access to the aforementioned pseudo-file

● include session files - this requires the attacker to be able to influence

the value of any string in a session (to inject code, e.g. <?php phpinfo(); ?
>), the sessions must be stored in a serialized session file (as e.g. x|
s:19:"<?php phpinfo(); ?>"; - this is the default setting for PHP) and the
PHP script must be able to access the session file (usually names /tmp/
sess_SESSIONID)

● include other files created by PHP application - this is very application

and system specific, but it basically describes any other file that is created
the websites functionality and the way it works, e.g. database files, cache
files, application-level logs, etc

Additional tools included both the poison nul byte (addressed in PHP 5.3.4[1]
released 2010-12-09) and excessive slash (/) suffix into path truncation bug[2]
(patched in 2009).

Temporary upload file inclusion
One other option is to take advantage of the way PHP handles file uploads via
HTTP. This method is far less known and not really usable on platforms other
than Windows (see Exploiting on Linux for details). Actually when I started writing
this paper I believed that this method is not known at all, but after few days of
searching and asking around I found a person (hi phunk ;>) that stumbled on this
method before. Nevertheless I couldn't find any other proof of this being common
knowledge, hence I decided to publish this article.

PHP engine, upon receiving a POST packet with RFC 1867 coded file(s), creates
one or more temporary files which are used to store the uploaded files data. A PHP
script handling file uploads is required to use the move_uploaded_file function to
move the uploaded temporary file to a place of it's desire (if the script requires the
file to exists after it terminates that is).
When the script ends PHP engine removes all temporary files for files that were
uploaded (if any are left after the script ends that is).
The image below shows the timeline of this behaviour:

http://www.google.com/url?q=http%3A%2F%2Fwww.faqs.org%2Frfcs%2Frfc1867.html&sa=D&sntz=1&usg=AFQjCNF9MIj5gVhu-X7CG64jTJz3YMn3RQ
http://www.google.com/url?q=http%3A%2F%2Fwww.faqs.org%2Frfcs%2Frfc1867.html&sa=D&sntz=1&usg=AFQjCNF9MIj5gVhu-X7CG64jTJz3YMn3RQ
http://www.google.com/url?q=http%3A%2F%2Fphp.net%2Fmanual%2Fen%2Ffunction.move-uploaded-file.php&sa=D&sntz=1&usg=AFQjCNEfmZFFs0SkJ6i9pFBkqBqdiXGWsg
http://www.google.com/url?q=http%3A%2F%2Fphp.net%2Fmanual%2Fen%2Ffunction.move-uploaded-file.php&sa=D&sntz=1&usg=AFQjCNEfmZFFs0SkJ6i9pFBkqBqdiXGWsg
http://www.google.com/url?q=http%3A%2F%2Fphp.net%2Fmanual%2Fen%2Ffunction.move-uploaded-file.php&sa=D&sntz=1&usg=AFQjCNEfmZFFs0SkJ6i9pFBkqBqdiXGWsg
http://www.google.com/url?q=http%3A%2F%2Fphp.net%2Fmanual%2Fen%2Ffunction.move-uploaded-file.php&sa=D&sntz=1&usg=AFQjCNEfmZFFs0SkJ6i9pFBkqBqdiXGWsg
http://www.google.com/url?q=http%3A%2F%2Fphp.net%2Fmanual%2Fen%2Ffunction.move-uploaded-file.php&sa=D&sntz=1&usg=AFQjCNEfmZFFs0SkJ6i9pFBkqBqdiXGWsg

The important fact here is that PHP engine creates the temporary files even if the
PHP script does not expect them (i.e. is not an upload handling script).
Hence, it is possible to send a file with arbitrary code to any PHP script, and
include the temporary file that the PHP engine has created.

Pros and cons
Good news is that it's common for a PHP script to have access to the directory (see
upload_tmp_dir in php.ini) where the temporary files are created (i.e. can include
files from this directory). On the default PHP installation the upload_tmp_dir is
not set - in this case either /tmp on Linux-based systems or C:\Windows\Temp on
Windows are used.
The bad news is that the name of the temporary file is random, which renders this
method unusable in most cases - it is fully exploitable on Windows and exploitable
in some cases on other systems.

Exploitation on Windows
To generate the random name on Windows PHP uses the GetTempFileName
function. Looking into documentation we can find the following explanation:

The GetTempFileName function creates a temporary file name of the following form:
<path>\<pre><uuuu>.TMP

In case of PHP <path> is upload_tmp_dir (normally it's just C:\Windows\Temp) and
<pre> is "php" (without the quotes). The last part is described as:

http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fini.core.php%23ini.upload-tmp-dir&sa=D&sntz=1&usg=AFQjCNFPejNDxJ-CLqUYUH_E5sKM-xLMfQ
http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fini.core.php%23ini.upload-tmp-dir&sa=D&sntz=1&usg=AFQjCNFPejNDxJ-CLqUYUH_E5sKM-xLMfQ
http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fini.core.php%23ini.upload-tmp-dir&sa=D&sntz=1&usg=AFQjCNFPejNDxJ-CLqUYUH_E5sKM-xLMfQ
http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fini.core.php%23ini.upload-tmp-dir&sa=D&sntz=1&usg=AFQjCNFPejNDxJ-CLqUYUH_E5sKM-xLMfQ
http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fini.core.php%23ini.upload-tmp-dir&sa=D&sntz=1&usg=AFQjCNFPejNDxJ-CLqUYUH_E5sKM-xLMfQ
http://www.google.com/url?q=http%3A%2F%2Fwww.php.net%2Fmanual%2Fen%2Fini.core.php%23ini.upload-tmp-dir&sa=D&sntz=1&usg=AFQjCNFPejNDxJ-CLqUYUH_E5sKM-xLMfQ
http://www.google.com/url?q=http%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Flibrary%2Faa364991(v%3Dvs.85).aspx&sa=D&sntz=1&usg=AFQjCNFGVfFRFMPUwLIEiO54wkI-AAGnsw

<uuuu> Hexadecimal value of uUnique

uUnique is one the arguments of GetTempFileName and in case of PHP, it's set to
0, which is a special value telling the function to use the current system time. The
important part here can be found in the remarks section:

Only the lower 16 bits of the uUnique parameter are used. This limits GetTempFileName
to a maximum of 65,535 unique file names if the lpPathName and lpPrefixStringparameters
remain the same.

Only 65k unique names makes a brute force possible, and using current system
time (number of milliseconds) makes things even simpler.

However, brute force is not needed here, thanks to a certain FindFirstFile quirk [3]
which allows using masks (<< as * and > as ?) in LFI paths on Windows. Thanks to
this, one can form an include path like this:

http://site/vuln.php?inc=c:\windows\temp\php<<

Commonly there are other files with "php" prefix in this directory, so narrowing the
mask might be required. In this case it's best to choose the widest possible mask
that does not include any file (e.g. php1<< or phpA<<, in worse case php11<<,
etc) and send upload-packets until the PHP engine will create a temporary file that
will match the mask.

Exploitation on GNU/Linux
For temporary name generation PHP engine on GNU/Linux uses mkstemp from
GNU libc. This function, depending on the way glibc is compiled, uses either (in
pseudocode; variables are uint64_t):

1. random_value = (seed += time() ^ PID)
2. random_value = (seed += (gettimeofday().sec << 32 | gettimeofday().usec)

^ PID)
3. random_value = (seed += rdtsc ^ PID)

The random_value is later written as 6 digits of k=62 (A-Za-z0-9 charset) numeric
system, and appended to the "/tmp/php" prefix (unless another directory is set),
e.g. /tmp/phpUs7MxA.

http://www.google.com/url?q=http%3A%2F%2Flinux.die.net%2Fman%2F3%2Fmkstemp&sa=D&sntz=1&usg=AFQjCNHRTJZsKfHtQuZ3a-BvKHhAVtYifw

From the aforementioned random_value generation methods, the 3rd is most
commonly used nowadays.

According to initial tests I made, the random value is unpredictable enough to be
considered safe against remote attacker.

This leads to the assumption that using this exploitation path is possible only in
these specific cases:

● When the tester is able to list the files in the upload (/tmp) directory
(presumably by another PHP script) - this would require a race condition
method where the tester uploads one file to a slow script (i.e. a script that
runs for a relatively long time) and lists the files in the upload directory
in another script, acquires the file temporary file name, and fires the LFI
exploit.

● When the tester is able to list the $_FILES array in a script - this requires an

even more tight race condition and is not always possible, since the attacker
must obtain the $_FILES array content during upload and send another
packet before the previous script ends and the temporary file is removed.
This is not possible in case of buffering of PHP output (e.g. if mod_gzip is
enabled in Apache).

Hence, this method is usable only in some specific cases and should not be
considered a generic method.

See also: part 2 of "A note on research done" section.

A note on research done
One of the ideas I had to widen the exploitation window (i.e. the time window
during which the temporary file exist) was to create an HTTP packet with e.g. 20
files (this is the default file-per-HTTP-packet limit in PHP) and send the first 19
files normally, but the last file in a slow manner (byte, sleep, byte, sleep, repeat).
In theory, the previous uploaded files from the same packet should still exist until
the upload will finish and the time window closes. However, it turns out that the
PHP engine's upload parsing function is not executed until the whole HTTP packet
arrives, thus, these files won't be yet created.

Also, in some cases, when httpd has access to /proc/self/fd (commonly httpd works
with privileges dropped to www-data, while /proc/self/fd has root as it's owner,
hence requires root privileges to access), this method is easier to exploit by trying

to upload files (in one thread) and include /proc/self/fd/XYZ in the other (e.g. start
with XYZ=10). However, the temporary file fd handle exists only between opening
the temp file and closing it, so it's a very narrow time window. Uploading large files
might widen this window a little though.

Future work
There is some room for improvements and additional research related to this
method:

● test mktemp and mkstemp on other systems (*BSD, Solaris, etc) / in other
libc implementations

● do proper research on mkstemp on GNU/Linux and it's predictability for both

a local and a remote attacker, that has both no knowledge and knowledge of
previous generated temporary names

● the FindFirstFile << quirk works now, but it may be removed later, hence

doing proper research on remotly predicting the temporary file name on
Windows might also be worth doing

References
[1] PHP 5.3 Changelog. http://php.net/ChangeLog-5.php
[2] Francesco "ascii" Ongaro, Giovanni "evilaliv3" Pellerano. PHP filesystem attack
vectors. http://www.ush.it/2009/02/08/php-filesystem-attack-vectors/
[3] Vladimir Vorontsov, Arthur Gerkis. Oddities of PHP file access in Windows®.
Cheat-sheet, 2011. http://onsec.ru/onsec.whitepaper-02.eng.pdf

Thanks to
Felix Gröbert for the interesting discussion that led to this article :)

Disclaimer
The views expressed here are mine alone and not those of my employer.

http://www.google.com/url?q=http%3A%2F%2Fphp.net%2FChangeLog-5.php&sa=D&sntz=1&usg=AFQjCNHtRP8xfWpGAyeAOcINlkhJlxauow
http://www.google.com/url?q=http%3A%2F%2Fphp.net%2FChangeLog-5.php&sa=D&sntz=1&usg=AFQjCNHtRP8xfWpGAyeAOcINlkhJlxauow
http://www.google.com/url?q=http%3A%2F%2Fphp.net%2FChangeLog-5.php&sa=D&sntz=1&usg=AFQjCNHtRP8xfWpGAyeAOcINlkhJlxauow
http://www.google.com/url?q=http%3A%2F%2Fphp.net%2FChangeLog-5.php&sa=D&sntz=1&usg=AFQjCNHtRP8xfWpGAyeAOcINlkhJlxauow
http://www.google.com/url?q=http%3A%2F%2Fphp.net%2FChangeLog-5.php&sa=D&sntz=1&usg=AFQjCNHtRP8xfWpGAyeAOcINlkhJlxauow
http://www.google.com/url?q=http%3A%2F%2Fphp.net%2FChangeLog-5.php&sa=D&sntz=1&usg=AFQjCNHtRP8xfWpGAyeAOcINlkhJlxauow
http://www.google.com/url?q=http%3A%2F%2Fphp.net%2FChangeLog-5.php&sa=D&sntz=1&usg=AFQjCNHtRP8xfWpGAyeAOcINlkhJlxauow
http://www.google.com/url?q=http%3A%2F%2Fphp.net%2FChangeLog-5.php&sa=D&sntz=1&usg=AFQjCNHtRP8xfWpGAyeAOcINlkhJlxauow
http://www.google.com/url?q=http%3A%2F%2Fphp.net%2FChangeLog-5.php&sa=D&sntz=1&usg=AFQjCNHtRP8xfWpGAyeAOcINlkhJlxauow
http://www.google.com/url?q=http%3A%2F%2Fwww.ush.it%2F2009%2F02%2F08%2Fphp-filesystem-attack-vectors%2F&sa=D&sntz=1&usg=AFQjCNFcdlcnNDKX6q07E7dIZy5A-oD0lA
http://www.google.com/url?q=http%3A%2F%2Fwww.ush.it%2F2009%2F02%2F08%2Fphp-filesystem-attack-vectors%2F&sa=D&sntz=1&usg=AFQjCNFcdlcnNDKX6q07E7dIZy5A-oD0lA
http://www.google.com/url?q=http%3A%2F%2Fwww.ush.it%2F2009%2F02%2F08%2Fphp-filesystem-attack-vectors%2F&sa=D&sntz=1&usg=AFQjCNFcdlcnNDKX6q07E7dIZy5A-oD0lA
http://www.google.com/url?q=http%3A%2F%2Fwww.ush.it%2F2009%2F02%2F08%2Fphp-filesystem-attack-vectors%2F&sa=D&sntz=1&usg=AFQjCNFcdlcnNDKX6q07E7dIZy5A-oD0lA
http://www.google.com/url?q=http%3A%2F%2Fwww.ush.it%2F2009%2F02%2F08%2Fphp-filesystem-attack-vectors%2F&sa=D&sntz=1&usg=AFQjCNFcdlcnNDKX6q07E7dIZy5A-oD0lA
http://www.google.com/url?q=http%3A%2F%2Fwww.ush.it%2F2009%2F02%2F08%2Fphp-filesystem-attack-vectors%2F&sa=D&sntz=1&usg=AFQjCNFcdlcnNDKX6q07E7dIZy5A-oD0lA
http://www.google.com/url?q=http%3A%2F%2Fwww.ush.it%2F2009%2F02%2F08%2Fphp-filesystem-attack-vectors%2F&sa=D&sntz=1&usg=AFQjCNFcdlcnNDKX6q07E7dIZy5A-oD0lA
http://www.google.com/url?q=http%3A%2F%2Fwww.ush.it%2F2009%2F02%2F08%2Fphp-filesystem-attack-vectors%2F&sa=D&sntz=1&usg=AFQjCNFcdlcnNDKX6q07E7dIZy5A-oD0lA
http://www.google.com/url?q=http%3A%2F%2Fwww.ush.it%2F2009%2F02%2F08%2Fphp-filesystem-attack-vectors%2F&sa=D&sntz=1&usg=AFQjCNFcdlcnNDKX6q07E7dIZy5A-oD0lA
http://www.google.com/url?q=http%3A%2F%2Fwww.ush.it%2F2009%2F02%2F08%2Fphp-filesystem-attack-vectors%2F&sa=D&sntz=1&usg=AFQjCNFcdlcnNDKX6q07E7dIZy5A-oD0lA
http://www.google.com/url?q=http%3A%2F%2Fwww.ush.it%2F2009%2F02%2F08%2Fphp-filesystem-attack-vectors%2F&sa=D&sntz=1&usg=AFQjCNFcdlcnNDKX6q07E7dIZy5A-oD0lA
http://www.google.com/url?q=http%3A%2F%2Fwww.ush.it%2F2009%2F02%2F08%2Fphp-filesystem-attack-vectors%2F&sa=D&sntz=1&usg=AFQjCNFcdlcnNDKX6q07E7dIZy5A-oD0lA
http://www.google.com/url?q=http%3A%2F%2Fwww.ush.it%2F2009%2F02%2F08%2Fphp-filesystem-attack-vectors%2F&sa=D&sntz=1&usg=AFQjCNFcdlcnNDKX6q07E7dIZy5A-oD0lA
http://www.google.com/url?q=http%3A%2F%2Fwww.ush.it%2F2009%2F02%2F08%2Fphp-filesystem-attack-vectors%2F&sa=D&sntz=1&usg=AFQjCNFcdlcnNDKX6q07E7dIZy5A-oD0lA
http://www.google.com/url?q=http%3A%2F%2Fwww.ush.it%2F2009%2F02%2F08%2Fphp-filesystem-attack-vectors%2F&sa=D&sntz=1&usg=AFQjCNFcdlcnNDKX6q07E7dIZy5A-oD0lA
http://www.google.com/url?q=http%3A%2F%2Fwww.ush.it%2F2009%2F02%2F08%2Fphp-filesystem-attack-vectors%2F&sa=D&sntz=1&usg=AFQjCNFcdlcnNDKX6q07E7dIZy5A-oD0lA
http://www.google.com/url?q=http%3A%2F%2Fonsec.ru%2Fonsec.whitepaper-02.eng.pdf&sa=D&sntz=1&usg=AFQjCNGsftRr81nSBzIFWMNP1pGndrb4IQ
http://www.google.com/url?q=http%3A%2F%2Fonsec.ru%2Fonsec.whitepaper-02.eng.pdf&sa=D&sntz=1&usg=AFQjCNGsftRr81nSBzIFWMNP1pGndrb4IQ
http://www.google.com/url?q=http%3A%2F%2Fonsec.ru%2Fonsec.whitepaper-02.eng.pdf&sa=D&sntz=1&usg=AFQjCNGsftRr81nSBzIFWMNP1pGndrb4IQ
http://www.google.com/url?q=http%3A%2F%2Fonsec.ru%2Fonsec.whitepaper-02.eng.pdf&sa=D&sntz=1&usg=AFQjCNGsftRr81nSBzIFWMNP1pGndrb4IQ
http://www.google.com/url?q=http%3A%2F%2Fonsec.ru%2Fonsec.whitepaper-02.eng.pdf&sa=D&sntz=1&usg=AFQjCNGsftRr81nSBzIFWMNP1pGndrb4IQ
http://www.google.com/url?q=http%3A%2F%2Fonsec.ru%2Fonsec.whitepaper-02.eng.pdf&sa=D&sntz=1&usg=AFQjCNGsftRr81nSBzIFWMNP1pGndrb4IQ
http://www.google.com/url?q=http%3A%2F%2Fonsec.ru%2Fonsec.whitepaper-02.eng.pdf&sa=D&sntz=1&usg=AFQjCNGsftRr81nSBzIFWMNP1pGndrb4IQ
http://www.google.com/url?q=http%3A%2F%2Fonsec.ru%2Fonsec.whitepaper-02.eng.pdf&sa=D&sntz=1&usg=AFQjCNGsftRr81nSBzIFWMNP1pGndrb4IQ
http://www.google.com/url?q=http%3A%2F%2Fonsec.ru%2Fonsec.whitepaper-02.eng.pdf&sa=D&sntz=1&usg=AFQjCNGsftRr81nSBzIFWMNP1pGndrb4IQ
http://www.google.com/url?q=http%3A%2F%2Fonsec.ru%2Fonsec.whitepaper-02.eng.pdf&sa=D&sntz=1&usg=AFQjCNGsftRr81nSBzIFWMNP1pGndrb4IQ
http://www.google.com/url?q=http%3A%2F%2Fonsec.ru%2Fonsec.whitepaper-02.eng.pdf&sa=D&sntz=1&usg=AFQjCNGsftRr81nSBzIFWMNP1pGndrb4IQ
http://www.google.com/url?q=http%3A%2F%2Fonsec.ru%2Fonsec.whitepaper-02.eng.pdf&sa=D&sntz=1&usg=AFQjCNGsftRr81nSBzIFWMNP1pGndrb4IQ
http://www.google.com/url?q=http%3A%2F%2Fonsec.ru%2Fonsec.whitepaper-02.eng.pdf&sa=D&sntz=1&usg=AFQjCNGsftRr81nSBzIFWMNP1pGndrb4IQ

