
Ten thousand security pitfalls:

The ZIP file format.
Gynvael Coldwind

@ Technische Hochschule Ingolstadt, 2018

About your presenter

All opinions expressed during this presentation are mine and mine alone, and not
those of my barber, my accountant or my employer.

(among other things)

What's on the menu

1. What's ZIP used for again?
2. What can be stored in a ZIP?

a. Also, file names
3. ZIP format 101 and format repair
4. Legacy ZIP encryption
5. ZIP format and multiple personalities
6. ZIP encryption and CRC32
7. Miscellaneous, i.e. all the things not mentioned so far.

Or actually, hacking a "secure cloud disk" website.

Also featuring:Steganography

EDITORIAL NOTE
Everything in this color is a quote from the official

ZIP specification by PKWARE Inc.

The specification is commonly known as
APPNOTE.TXT

https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT

Cyber Secure CloudDisk

Where is ZIP used?

.zip files, obviously

Default ZIP file icon from
Microsoft Windows 10's Explorer

And also...

.odt, .odp, .ods, ...
(OpenDocument)

Open Packaging Conventions:
.3mf, .dwfx, .cddx, .familyx,
.fdix, .appv, .semblio, .vsix,

.vsdx, .appx, .appxbundle, .cspkg,
.xps, .nupkg, .oxps, .jtx, .slx, .smpk,

.scdoc,
and Offixe Open XML formats:

.docx, .pptx, .xlsx

https://en.wikipedia.org/wiki/Open_Packaging_Conventions

And also...

.jar
(Java Archive)

.war
(Web application archive)

.rar (not THAT .rar)
(resource adapter archive)

.ear
(enterprise archive)

.sar
(service archive)

.par
(Plan Archive)

.kar
(Karaf ARchive)

https://en.wikipedia.org/wiki/JAR_(file_format)

And also...

.apk
(Android Application

Package)

.epub
(Electronic Publication)

Icon from Android SDK

calibre

And also... (script to scan drives)
import os
import sys

IGNORE_LIST = {
 ".zip", ".docx", ".odt", ".epub", ".jar", ".xlsx",
".pyz",
 ".pptx", ".odp",
}

def process_file(fname):
 try:
 with open(fname, "rb") as f:
 d = f.read(4)
 except WindowsError:
 return False # No access probably, don't care.
 except IOError:
 return False # No access probably, don't care.
 if d.startswith("PK\3\4"):
 return True
 return False

def scan_dir(path):
 try:
 entries = os.listdir(path)
 except WindowsError:
 return # No access probably, don't care.
 for fname in entries:
 name, ext = os.path.splitext(fname)

 if ext.lower() in IGNORE_LIST:
 continue

 if ext == '':
 ext = '_'

 full_path = path + "\\" + fname

 if os.path.isfile(full_path):
 ret = process_file(full_path)

 if not ret:
 continue

 print "%s: %s" % (ext, full_path)

 with open("scan_res/%s" % ext, "a") as f:
 f.write("%s\n" % full_path)
 continue

 if os.path.isdir(full_path):
 scan_dir(full_path)
 continue

if len(sys.argv) != 2:
 sys.exit("usage: scan_disk.py <start_dir>")

scan_dir(sys.argv[1])

And also...

.npz
(Python NumPy)

.whl
(Python Wheels)

.egg
(Python Egg)

zipimport

And also...

(backup-*.apkg)

(*.btapp, *.lng)

(avrdbg/bundles/*.bndl)

(.cmmbtn, .cmmtpl, .libzip)

(*.hashdb)

(*.fla, *.swc)

And also...

Quake 3 (*.pkg) Uplink (*.dat files)

And also...

Torment (*.ttn savegame files) Pillars of Eternity (*.savegame)

And also...

.aar (Axis Archive / Android Archive Library)
.appx (Microsoft General MIDI DLS)
.bau (OpenOffice's... something?)

.cache (Microsoft extension*.*.cache?)

.dat (Intel VTune Amplifier resources)
.dpk (YAMAHA... something?)

.dsf (DeDe Symbol Files)
.eftx (Microsoft Office Document Themes Effects)

.fcstd (KiCad 3D shapes)
.hdf, .ise (now really sure, sth hardware related)

.htb (wx wxHTML help format)

And also...

.jisp (Psi icon set)
.little (Thunderbird/Firefox startup cache)

.lsz (LiteStep themes/configuration)
.mshc (Microsoft Help Container File)

.mwb (MySQL Workbench Model)
.nupkg (NuGet packages for .NET)

.ora (OpenRaster, used e.g. by MyPaint)
.otp (OpenOffice templates)
.otx (OpenOffice dictionary)

.pez (Prezi Presentation)
.phar (PHP application package)

And also...

.raz, .saz (Fiddler request history)
.rjt (RealPlayer template?)
.sbsx (PowerPoint shapes)
.snagacc (SnagIt plugin)

.sob (OpenOffice something...)
.sublime-package (Sublime Package, obviously)

.sxw (SUN XML Writer)
.thmx (Microsoft Office document themes)

.vs (RealPlayer UI files?)
.vsb (AIDA64 sidebar gadget)

.wmz (Windows Media Player skins)

And also...

.wsz (LiteStep themes?)
.xmind (xmind documents)

.xmt (xmind template)
.xpi (Firefox Cross-Platform Installer Module)

.xps (XML Paper Specification)
.zxp (PalleteApp extension)

The list is not exhaustive.

Furthermore

It's used when:
● Uploading GERBER files to your PCB manufacturer

○ Or more general: uploading a bundle of files somewhere
○ Or downloading a bundle of files

● Don't forget about combining ZIPs with
other file formats, e.g. EXE (SFX)

● And well, sending files to your friends too.

What can a ZIP store?

What can be stored inside a ZIP archive?

Files Directories

What can be stored inside a ZIP archive?

Files Directories
Technically identical with one minor difference

 4.4.15 external file attributes: (4 bytes)

 The mapping of the external attributes is
 host-system dependent (see 'version made by'). For
 MS-DOS, the low order byte is the MS-DOS directory
 attribute byte. If input came from standard input, this
 field is set to zero.

What can be stored inside a ZIP archive?

Files Directories
Steganography

Windows Explorer
7-zip

Total Commander

zipinfo (InfoZIP)

What can be stored inside a ZIP archive?

Files Directories
Technically identical with one minor difference

 4.4.15 external file attributes: (4 bytes)

 The mapping of the external attributes is
 host-system dependent (see 'version made by'). For
 MS-DOS, the low order byte is the MS-DOS directory
 attribute byte. If input came from standard input, this
 field is set to zero.

What can be stored inside a ZIP archive?

Files Directories

Symlinks

Cyber Secure CloudDisk

File names in ZIP

Stored in several locations per entry:
● Local File Header
● Central Directory Header
● Extra: Info-ZIP Unicode Path Extra Field

Technically it's possible to create
any number of separate Extra

entries per file in both LFH and CDH

Which one to
use (trust)?

File names in ZIP

Unreal Commander exploit for bug reported in 2007
nul byte

File names in ZIP

Other problems with names (just enumerating ideas):
● Files with the same name

File names in ZIP

Other problems with names (just enumerating ideas):
● Files with the same name
● lower-upper case (i.e. Windows/Unix)

File names in ZIP

Other problems with names (just enumerating ideas):
● Files with the same name
● lower-upper case (i.e. Windows/Unix)
● NTFS ADS :$data

File names in ZIP

Other problems with names (just enumerating ideas):
● Files with the same name
● lower-upper case (i.e. Windows/Unix)
● NTFS ADS :$data
● Network Share names (\\127.0.0.1\C$\...)

https://googleprojectzero.blogspot.de/2016/02/the-definitive-guide-on-win32-to-nt.html

https://googleprojectzero.blogspot.de/2016/02/the-definitive-guide-on-win32-to-nt.html

File names in ZIP

Other problems with names (just enumerating ideas):
● Files with the same name
● lower-upper case (i.e. Windows/Unix)
● NTFS ADS :$data
● Network Share names (\\127.0.0.1\C$\...)
● Very Long file names (not well known?)

http://www.icewall.pl/?p=467

http://www.icewall.pl/?p=467

File names in ZIP

Other problems with names (just enumerating ideas):
● Files with the same name
● lower-upper case (i.e. Windows/Unix)
● NTFS ADS :$data
● Network Share names (\\127.0.0.1\C$\...)
● Very Long file names (not well known?)
● Encoding issues (UTF-8 vs OS vs IBM 437)

File names in ZIP

Other problems with names (just enumerating ideas):
● Files with the same name
● lower-upper case (i.e. Windows/Unix)
● NTFS ADS :$data
● Network Share names (\\127.0.0.1\C$\...)
● Very Long file names (not well known?)
● Encoding issues (UTF-8 vs OS vs IBM 437)
● XSS in the <script>filename</script>

Or SQL Injection, in the end the file name is just a text field.

File names in ZIP

Other problems with names (just enumerating ideas):
● Files with the same name
● lower-upper case (i.e. Windows/Unix)
● NTFS ADS :$data
● Network Share names (\\127.0.0.1\C$\...)
● Very Long file names (not well known?)
● Encoding issues (UTF-8 vs OS vs IBM 437)
● XSS in the <script>filename</script>

Cyber Secure CloudDisk

ZIP Format 101 & Recovering ZIPs

As you know, a ZIP file starts with letters "PK".

ZIP Magic: PK

As you know, a ZIP file starts with letters "PK".

ZIP Magic: PK

Let's try that again...

file.zip
look for the "header" in the
last 65557 bytes of the file

PK\5\6...

4.3.16 End of central directory record:

 end of central dir signature 4 bytes (0x06054b50)
 [...]
 total number of entries in
 the central directory 2 bytes
 size of the central directory 4 bytes
 offset of start of central
 [...]
 .ZIP file comment length 2 bytes
 .ZIP file comment (variable size)

$0000-$FFFF
0-65535

22
 b

yt
es

In total: from 22 to 65557 bytes
(so, the PK\5\6 sig will be "somewhere" between EOF-65557 do EOF-22)

Proper parsing must start from the end

PK\3\4... LFH + data PK\5\6...EOCDPK\2\1... CDH

File header and
data

List of files
(and "pointers")

An overview of a single-file ZIP

Each file has two "headers":
Local one, right next to data - Local File Header

And the more verbose entry in the list of files - Central Directory Header

PK\3\4... LFH + data PK\5\6...EOCDPK\2\1... CDH

PK\3\4... LFH + data PK\5\6...EOCDPK\2\1... CDH

Please note that it's a "pointer"-based format

PK\3\4... LFH + data PK\5\6...EOCDPK\2\1... CDH

More files in a ZIP

PK\2\1... CDHPK\3\4...

Central Directory Header (CDH)
 central file header signature 4 bytes (0x02014b50)
 version made by 2 bytes
 version needed to extract 2 bytes
 general purpose bit flag 2 bytes
 compression method 2 bytes
 last mod file time 2 bytes
 last mod file date 2 bytes
 crc-32 4 bytes
 compressed size 4 bytes
 uncompressed size 4 bytes
 file name length 2 bytes
 extra field length 2 bytes
 file comment length 2 bytes
 disk number start 2 bytes
 internal file attributes 2 bytes
 external file attributes 4 bytes
 relative offset of local header 4 bytes

 file name (variable size)
 extra field (variable size)
 file comment (variable size)

PK\2\1... CDH

these are
redundant between

LFH and CDH
(xslx)

PK\3\4... LFH + data

What if more CDHs

point to the same
LFH?

Local File Header (LFH)
 local file header signature 4 bytes (0x04034b50)
 version needed to extract 2 bytes
 general purpose bit flag 2 bytes
 compression method 2 bytes
 last mod file time 2 bytes
 last mod file date 2 bytes
 crc-32 4 bytes
 compressed size 4 bytes
 uncompressed size 4 bytes
 file name length 2 bytes
 extra field length 2 bytes

 file name (variable size)
 extra field (variable size)
 file data (variable size)

PK\3\4... LFH + data

How to repair a ZIP?

● Try some programs like Info-ZIP's
zip -F and -FF

● Manually - copy correct-looking data between
LFH and CDH

● There is also the "CTF brute force approach"

Cyber Secure CloudDisk

Legacy ZIP encryption

● Still used by some tools by default

● Really good backward compatibility

● Technically a byte-based stream cipher

7-zip

Legacy ZipCrypto

Also other
methods may be

available (e.g. RC4)

● Still used by some tools by default

● Really good backward compatibility

● Technically a byte-based stream cipher

● A "known plaintext" attack known from 1994
○ With further improvements in 2002

7-zip

Legacy ZipCrypto

Also other
methods may be

available (e.g. RC4)

Legacy ZipCrypto - papers to read

"A Known Plaintext Attack on the PKZIP
Stream Cipher" (1994)

by Eli Biham and Paul C. Kocher

"ZIP Attacks with Reduced Known Plaintext" (2002)
by Michael Stay

https://pdfs.semanticscholar.org/18dd/4b4d646b79b473448604254fc605c58eae7c.pdf
https://pdfs.semanticscholar.org/18dd/4b4d646b79b473448604254fc605c58eae7c.pdf
http://math.ucr.edu/~mike/zipattacks.pdf

Legacy ZipCrypto - a 96-bit byte-oriented stream cipher

key0 key1 key2

key
3

32-bit

8-bit

internal state

Legacy ZipCrypto - updating the key after each byte enc

key0 key1 key2

key
3

chr

(from the first paper)

key0 = crc32(key0, chr)

Legacy ZipCrypto - updating the key after each byte enc

key0 key1 key2

key
3

chr

(from the first paper)

key0 = crc32(key0, chr)

key1 = (key1 + LSB(key0)) * 134775813 + 1

Legacy ZipCrypto - updating the key after each byte enc

key0 key1 key2

key
3

chr

(from the first paper)

key0 = crc32(key0, chr)

key1 = (key1 + LSB(key0)) * 134775813 + 1

key2 = crc32(key2, MSB(key1)

Legacy ZipCrypto - updating the key after each byte enc

key0 key1 key2

key
3

chr

(from the first paper)

key0 = crc32(key0, chr)

key1 = (key1 + LSB(key0)) * 134775813 + 1

key2 = crc32(key2, MSB(key1)

temp = key2 | 3 (16 bottom bits)

key3 = LSB((temp * (temp ^ 1)) >> 8)

Legacy ZipCrypto - encryption

key0 key1 key2

key
3

chr

(from the first paper)

C ← chr ⊕ key3

Legacy ZipCrypto - attack (simplified)

key0 key1 key2

key
3

chr

(from the first paper)

C ← chr ⊕ key3

(if we know plaintext, then...)

key3 == C ⊕ chr

With some
probability

With some
probability

W
ith

 so
m

e

pr
ob

ab
ili

ty

Legacy ZipCrypto - attack (simplified)

key0 key1 key2

key
3

chr

key0 - key2 livecycle:
1. Init with constants (0x12345678, ...)
2. Update with password (discard output, keep state)
3. Update with 12 bytes of "random data"
4. Update with data to encrypt

With some
probability

With some
probability

W
ith

 so
m

e

pr
ob

ab
ili

ty

Legacy ZipCrypto - attack (simplified)

key0 key1 key2

key
3

chr

● The more plaintext we know, the more we
can reason about the state of key0 - key2.

● If we unroll to initial state (after password & "random"
data is fed), we can decrypt everything.

● Bonus: In some cases we can even get the password.

With some
probability

With some
probability

W
ith

 so
m

e

pr
ob

ab
ili

ty

Legacy ZipCrypto - attack (simplified)

key0 key1 key2

key
3

chr

Important notes on the attack:
● Minimum of 13 bytes of known compressed plaintext

● "compressed" is the keyword here(different apps
generate different output when compressing)

● It takes a few minutes to run

With some
probability

With some
probability

W
ith

 so
m

e

pr
ob

ab
ili

ty

Cyber Secure CloudDisk
https://www.unix-ag.uni-kl.de/~conrad/krypto/pkcrack.html

ZIP format and multiple personalities

4.3.16 End of central directory record:

 end of central dir signature 4 bytes (0x06054b50)
 [...]
 total number of entries in
 the central directory 2 bytes
 size of the central directory 4 bytes
 offset of start of central
 [...]
 .ZIP file comment length 2 bytes
 .ZIP file comment (variable size)

$0000-$FFFF
0-65535

22
 b

yt
es

In total: from 22 to 65557 bytes
(so, the PK\5\6 sig will be "somewhere" between EOF-65557 do EOF-22)

Proper parsing must start from the end Let's lookat this slideagain

"Start First"
Start left most at EOF-65557,

and then decrease the comment
size one by one.

"End First"
(well, usually there are no comments)

Start at the end at EOF-22,
and then increase comment

size one by one.

PK\5\6...

range of
possibilities

PK\5\6...

range of
possibilities

So... how do we search for the right comment size?

Why do we care about EOCDH at all?

"stream"
EOCDH is redundant, let's ignore it and parse

only Local File Headers going from offset 0 in the file
(usually this is faster)

(99.9% of ZIPs can be successfully parsed like this)

PK\3\4... LFH + data PK\3\4... LFH + data PK\3\4... LFH + data

(individual files in the archive)

PK\5\6...

(who needs this anyway)

Why do we care about EOCDH at all?

"aggressive stream"
Just ignore the 'garbage' bytes between LFHs.

(forensics / stegano?)

PK\3\4... LFH + data PK\3\4... LFH + data PK\3\4... LFH + data

(individual files in the archive)

PK\5\6...

(who needs this anyway)

Let's see how this works in practice - abstract.zip

EOCD

LFH+data
CDH
EOCD

LFH+data
CDH

LFH+data

LFH+data
syntax breaker

yellow part is
technically a
comment for

the green
archive

stream

aggressive
stream

start-first

end-first

Architecture of abstract.zip

EOCD

LFH+data
CDH
EOCD

LFH+data
CDH

LFH+data

LFH+data
syntax breaker

Testing abstract.zip

Kudos for help in
testing this:

● Mulander
● Felix Groebert
● Salvation
● j00ru

Note: data might be a
little stale (2013)

EOCD

LFH+data
CDH
EOCD

LFH+data
CDH

LFH+data

LFH+data
syntax breaker

EndFirst style Total Commander 8.01
UnZip 6.00 (Debian)
Midnight Commander
Windows 7 Explorer
ALZip
KGB Archiver
7-zip
b1.org
Python zipfile
JSZip
C# DotNetZip
perl Archive::Zip
Jeffrey's Exif Viewer
WOBZIP
GNOME File Roller
WinRAR
OSX UnZip
zip.vim v25
Emacs Zip-Archive mode
Ada Zip-Ada v45
Go archive/zip
Pharo smalltalk 2.0 ZipArchive
Ubuntu less
Java ZipFile

All of these

EOCD

LFH+data
CDH
EOCD

LFH+data
CDH

LFH+data

LFH+data
syntax breaker

StartFirst style

PHP ZipArchive
PHP zip_open ...
PHP zip:// wrapper
tcl + tclvfs + tclunzip

Only these

EOCD

LFH+data
CDH
EOCD

LFH+data
CDH

LFH+data

LFH+data
syntax breaker

Stream style

Ruby rubyzip2
Java ZipArchiveInputStream
java.util.zip.ZipInputStream

Only these
Note that Java

is both here and

in the 'EndFirst' list

EOCD

LFH+data
CDH
EOCD

LFH+data
CDH

LFH+data

LFH+data
syntax breaker

Aggressive Stream style

binwalk

All files
should be found

● Usually no.

● However, if multiple libraries/apps are
used, consistency is key.

Is this a problem?

Think:

1. Content verification done

using one approach

2. Actual unpack done using

another approach

● Usually no.

● However, if multiple libraries/apps are
used, consistency is key.

Is this a problem?

Think:

1. Content verification done

using one approach

2. Actual unpack done using

another approach

Warning:There might be other parsing inconsistencies between libraries!Ideally use a single library.

EICAR test results (using VT):
● Most use End-First approach
● Some use the Aggressive Stream way
● These use the Stream method:

○ VBA32
○ NANO-Antivirus
○ Norman
○ F-Prot
○ Agnitum
○ Commtouch

Also, AV (warning: stale data, 2013)

Cyber Secure CloudDisk

ZIP encryption and CRC32

Some facts:
● ZIP uses the 0xEDB88320 polynomial

● CRC-32 is not a cryptographic hash

● Reversible to some extent
○ Actually there is quite a lot of fun stuff you can do

with CRC

Example reading: "Reversing CRC - Theory and Practice"
by M. Stigge, H. Plotz, W. Muller, J-P. Redlich

CRC-32 is a fun one!

Definitely MUST NOT be in the clear!

CRC-32 is a fun one!

In some versions, metadata is in the clear
 local file header signature 4 bytes (0x04034b50)
 version needed to extract 2 bytes
 general purpose bit flag 2 bytes
 compression method 2 bytes
 last mod file time 2 bytes
 last mod file date 2 bytes
 crc-32 4 bytes
 compressed size 4 bytes
 uncompressed size 4 bytes
 file name length 2 bytes
 extra field length 2 bytes

 file name (variable size)
 extra field (variable size)
 file data (variable size)

LFH

Definitely MUST NOT be in the clear!
... but it sometimes is.

See also:
● "ZIP file encryption weakness"

by K. Matusiewicz, N. Wochtman

● Also on CTFs!
Task: "A hopeless case" (CONFidence CTF 2015)

CRC-32 is a fun one!

http://www.instytutpwn.pl/wp-content/uploads/2017/11/ZIP-file-encryption-weaknesses.pdf
https://docs.google.com/presentation/d/198KFiowdUIYkTUncPbb-AD_z-gAfHvuySDhUg_9-YTE/pub?slide=id.ga01271e16_0_166

Cyber Secure CloudDisk
https://github.com/theonlypwner/crc32

https://github.com/theonlypwner/crc32

Miscellaneous, i.e. all the things not mentioned so far.

Just enumerating ideas:
● Known and well loved Buffer Overflow

○ compressed size < after-unpack(data)
○ long file names

● Memory disclosure
○ uncompressed size > after-unpack(data)
○ uncompressed size > compressed size for 'STORED'

● Signed/Unsigned issues in various fields
○ size, offsets

ZIP vs low-level

http://en.wikipedia.org/wiki/Gifar

https://code.google.com/p/corkami/wiki/mix
CorkaMIX is a Windows executable, and also a working PDF
document, Jar (Zip + Class + manifest), and HTML +
JavaScript files.

PHP LFI, ZIP polyglot upload, zip:// or phar://

GIFAR / Ange CorkaMIX / etc (binary polyglots)

http://en.wikipedia.org/wiki/Gifar
https://code.google.com/p/corkami/wiki/mix

Mostly useful on CTFs / in forensics.
● Office XML Steganography Tool (extra field)
● "Empty" space between files
● More data than "uncompressed size" field claims there

is. Or data after the DEFLATE "end tag".
● Extra fields, comments.
● Files of the same name, or with \0 in the name
● Well, abstract.zip ;)
● Stegano using the compression protocol/layer

More ZIP steganography Steganography

It's a "list + offsets" type format, so...
HTTP Range: parameter can be used to download individual files
from a ZIP archive hosted online.

http://gynvael.coldwind.pl/n/python_zipdl

> python zipdl.py http://example.com/example.zip

File Name ... Size

readme_EndFirst.txt ... 231

> python zipdl.py http://example.com/example.zip readme_EndFirst.txt

> ls -la readme_EndFirst.txt

-rw-r----- 1 gynvael gynvael 231 May 13 14:45 readme_EndFirst.txt

>

Bonus - ZIP download!

http://gynvael.coldwind.pl/n/python_zipdl

class MyFileWrapper:

 def __init__(self, url):

 --> HEAD ...

 def seek(self, offset, whence):

 def tell(self):

 def read(self, amount=-1):

 --> GET ...

 Range: bytes=%u,%u

z = zipfile.ZipFile(MyFileWrapper_object)

Bonus - ZIP download! Pretty easy in Python...

Three types:
1. small ZIP --> super large file

(unreal cmd uncomp size)

2. small ZIP --> multiple ZIPs --> multiple ZIPs from each --> ...
--> very large files

3. Infinite recursion (ZIP quine)
http://research.swtch.com/zip
(by Russ Cox)

EPIC
!

Bonus - ZIP DoS aka pack bombs

http://research.swtch.com/zip

Usually DEFLATE (zlib), but also:
● Uncompressed (STORED)
● BZ2
● XZ
● WavPack
● (several others)

Bonus - ZIP compression

Are there any easy questions?
(If there are only hard ones then I'm sorry, but we run out of time ;>)

P.S. We're hiring at Google - reach out to me if you're interested!

THE END

E-mail: gynvael@coldwind.pl Twitter: @gynvael YT: GynvaelEN
Blog: http://gynvael.coldwind.pl/ (Soon also: http://gynvael.live)

